Tài liệu gồm 28 trang được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, chọn lọc và hướng dẫn giải 50 bài toán ứng dụng tích phân tính quãng đường vật chuyển động, bổ trợ cho học sinh trong quá trình học chương trình Giải tích 12 chương 3: nguyên hàm – tích phân và ứng dụng và ôn thi THPT Quốc gia môn Toán.Khái quát nội dung tài liệu 50 bài toán ứng dụng tích phân tính quãng đường vật chuyển động:
A. Lý thuyết: Một vật chuyển động theo phương trình v(t) trong khoảng thời gian từ t = a đến t = b (a < b) sẽ di chuyển được quãng đường s bằng tích phân của hàm v(t) với t từ a đến b.
B. Bài tập:
+ Một vật chuyển động trong 3 giờ với vận tốc v(km/h) phụ thuộc thời gian t(h) có đồ thị của vận tốc như hình vẽ bên. Trong khoảng thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh A(2;9) và trục đối xứng song song với trục tung, khoảng thời gian còn lại đô thị là một đoạn thẳng song song với trục hoành. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó (kết quả làm tròn hàng phần trăm).
[ads]
+ Cho đồ thị biểu thị vận tốc của hai xe A và B khởi hành cùng một lúc, bên cạnh nhau và trên cùng một con đường. Biết đồ thị biểu diễn vận tốc của xe A là một đường Parabol, đồ thị biểu diễn vận tốc của xe B là một đường thẳng ở hình bên. Hỏi sau khi đi được 3 giây, khoảng cách giữa hai xe là bao nhiêu mét?
+ Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 (mét) so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật v(t) = 10t – t^2, trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, v(t) được tính theo đơn vị mét / phút (m/p). Nếu như vậy thì bắt đầu tiếp đất vận tốc v của khí cầu là?
50 bài toán ứng dụng tích phân tính quãng đường vật chuyển động
Bạn đang xem 50 bài toán ứng dụng tích phân tính quãng đường vật chuyển động.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Các dạng bài tập ứng dụng hình học của tích phân Toán 12 KNTTVCS
Nguyên hàm - tích phân và ứng dụng trong các đề thi thử THPT QG môn Toán
Ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế
Các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG
Các dạng toán ứng dụng của tích phân thường gặp trong kỳ thi THPTQG
Các dạng bài tập tích phân Toán 12 CTST
Chuyên đề nguyên hàm, tích phân và ứng dụng ôn thi THPT 2021 - Nguyễn Bảo Vương
Các dạng bài tập tích phân Toán 12 KNTTVCS
Be the first to comment