Đề thi giữa học kỳ 2 Toán 11 năm 2019 – 2020 trường THPT Yên Phong 1 – Bắc Ninh

Bạn đang xem Đề thi giữa học kỳ 2 Toán 11 năm 2019 – 2020 trường THPT Yên Phong 1 – Bắc Ninh. Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề thi giữa học kỳ 2 Toán 11 năm 2019 2020 trường THPT Yên Phong 1 Bắc Ninh
Đề thi giữa học kỳ 2 Toán 11 năm 2019 2020 trường THPT Yên Phong 1 Bắc Ninh

Ngày … tháng 05 năm 2020, trường THPT Yên Phong số 1, huyện Yên Phong, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra giữa học kỳ 2 môn Toán lớp 11 năm học 2019 – 2020.Đề thi giữa học kỳ 2 Toán 11 năm 2019 – 2020 trường THPT Yên Phong 1 – Bắc Ninh mã đề 157 gồm 03 trang với 25 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 157, 261, 335, 436.Trích dẫn đề thi giữa học kỳ 2 Toán 11 năm 2019 – 2020 trường THPT Yên Phong 1 – Bắc Ninh:
+ Mệnh đề nào đúng trong các mệnh đề sau?
A. Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c thì b song song với c.
B. Góc giữa hai đường thẳng bằng góc giữa hai vec tơ chỉ phương của hai đường thẳng đó.
C. Góc giữa hai đường thẳng là góc nhọn.
D. Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c khi b song song hoặc trùng với c.
[ads]
+ Mệnh đề nào đúng trong các mệnh đề sau?
A. Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng đã cho (khi đường thẳng không vuông góc với mặt phẳng).
B. Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường b và mặt phẳng (P) thì a song song song hoặc trùng với b.
C. Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường a và mặt phẳng (Q) thì mp(P) song song với mp(Q).
D. Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường b và mặt phẳng (P) thì a song song song với b.
+ Trong các mệnh đề sau đây, mệnh đề nào sai?
A. Các hàm đa thức liên tục trên R.
B. Các hàm phân thức hữu tỉ liên tục trên từng khoảng xác định của chúng.
C. Nếu hàm số y = f(x) liên tục trên khoảng (a;b) và f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm thuộc (a;b).
D. Nếu các hàm số y = f(x), y = g(x) liên tục tại x0 thì hàm số y = f(x).g(x) liên tục tại x0.

Bài viết liên quan:

Be the first to comment

Leave a Reply

Your email address will not be published.


*