Tài liệu gồm 66 trang được biên soạn bởi thầy giáo Đặng Việt Đông, hướng dẫn phương pháp giải bài toán tìm số nghiệm của phương trình hàm hợp, một dạng toán vận dụng cao thường gặp trong các đề thi thử Trung học Phổ thông Quốc gia môn Toán.I. KIẾN THỨC CẦN NHỚ
II. CÁC DẠNG BÀI TẬP TƯƠNG TỰ
III. VÍ DỤ MINH HỌA
Bài toán: Cho hàm số f(x) có bảng biến thiên như sau. Số nghiệm thuộc đoạn [0;5pi/2] của phương trình f(sinx) = 1 là?
1. Dạng toán: Đây là dạng toán sử dụng bảng biến thiên (BBT) hoặc đồ thị của hàm số f(x) để tìm số nghiệm thuộc đoạn [a;b] của phương trình c.f(g(x)) + d = m.
2. Kiến thức cần nhớ: Số nghiệm thuộc đoạn [a’;b’] của phương trình f(t) = k là số giao điểm của đồ thị y = f(t) và đường thẳng y = k với t thuộc [a’;b’] (với k là tham số).
[ads]
3. Hướng giải:
+ Bước 1. Đặt ẩn phụ t = g(x). Với x thuộc [a;b] suy ra t thuộc [a’;b’].
+ Bước 2. Với c.f(g(x)) + d = m suy ra f(t) = k.
+ Bước 3. Từ bảng biến thiên (BBT) của hàm số y = f(x) suy ra bảng biến thiên (BBT) của hàm số y = f(t) để giải bài toán số nghiệm thuộc đoạn [a’;b’] của phương trình f(t) = k.
IV. BÀI TẬP RÈN LUYỆN
Tuyển chọn 82 bài tập trắc nghiệm tìm số nghiệm của phương trình hàm hợp có đáp án và lời giải chi tiết.
Tìm số nghiệm của phương trình hàm hợp – Đặng Việt Đông
Bạn đang xem Tìm số nghiệm của phương trình hàm hợp – Đặng Việt Đông.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Bài toán khảo sát hàm số trong các đề thi TN THPT 2023 môn Toán
Các dạng toán về hàm ẩn liên quan đến cực trị của hàm số
Các dạng bài tập tính đơn điệu và cực trị của hàm số Toán 12 KNTTVCS
Bài tập đường tiệm cận của đồ thị hàm số - Diệp Tuân
Toán thực tế ứng dụng đạo hàm và khảo sát hàm số - Đặng Việt Đông
Ôn kiến thức, luyện kỹ năng bài giảng tính đơn điệu của hàm số
Tóm tắt lý thuyết và bài tập trắc nghiệm sự tương giao giữa hai đồ thị hàm số
Tìm cực trị của hàm số hợp f(u(x)) khi biết đồ thị hàm số f(x)
Be the first to comment