Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Diệp Tuân, hướng dẫn giải các dạng toán số phức và các phép toán về số phức trong chương trình Giải tích 12 chương 4 bài số 1.Khái quát nội dung tài liệu số phức và các phép toán về số phức – Diệp Tuân:
Nhóm bài toán 1. Tính toán cộng trừ, nhân chia các số phức.
+ Áp dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức.
+ Số phức và thuộc tính của nó.
+ Lũy thừa đơn vị ảo.
Nhóm bài toán 2. Hai số phức bằng nhau.
+ Áp dụng các công thức cộng, trừ, nhân, chia số phức để rút gọn đưa về tính chất hai số phức bằng nhau.
+ a + bi = c + di khi và chỉ khi a, b, c, d thuộc R.
Nhóm bài toán 3. Tính toán số phức có chứa lũy thừa đơn vị ảo i^n.
+ Áp dụng các công thức lũy thừa đơn vị ảo.
+ Áp dụng các phép toán cộng trừ, nhân chai số phức.
[ads]
Nhóm bài toán 4. Tìm phần thực, phần ảo, số phức liên hợp và môđun của z, w.
+ Áp dụng phép chia hai số phức, ta cần nhân thêm số phức liên hợp của mẫu số.
+ Nếu sử dụng casio, ta chuyển về chế độ CMPLX (mode 2) (i tương ứng ENG).
+ Khi bài toán yêu cầu tìm các thuộc tính của số phức (phần thực, phần ảo, môđun hoặc số phức liên hợp) mà đề bài cho giả thiết chứa hai thành phần trong ba thành phần thì ta sẽ gọi số phức z rồi sau đó thu gọn và sử dụng kết quả hai số phức bằng nhau, giải hệ.
Nhóm bài toán 5. Các số phức z thỏa mãn biểu thức số phức là số thực, số thuần ảo.
+ Số phức z thuần ảo ⇔ phần thực a = 0.
+ Số phức z là số thực ⇔ phần ảo b = 0.
Nhóm bài toán 6. Nhóm bài toán lấy môđun hai vế của đẳng thức số phức.
+ Sử dụng phép kéo theo của hai số phức bằng nhau.
+ Kỹ thuật này chỉ được thực hiện được khi biểu thức giả thiết của bài toán được đưa về các dạng chuẩn.
Nhóm bài toán 7. Chuẩn hóa số phức.
Số phức và các phép toán về số phức – Diệp Tuân
Bạn đang xem Số phức và các phép toán về số phức – Diệp Tuân.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Bài toán tìm tập hợp điểm và cực trị của số phức - Diệp Tuân
Số phức và một số ứng dụng - Nguyễn Tài Chung
Các dạng bài tập VDC phương trình bậc hai trên tập số phức
Chuyên đề số phức - Nguyễn Chín Em
Ôn tập vận dụng cao tổng hợp số phức thi TN THPT 2023 môn Toán
Bài toán GTLN - GTNN của môđun số phức
Số phức trong các đề thi thử THPT Quốc gia môn Toán
Ngân hàng câu hỏi số phức: Bài toán tìm số phức - Lê Bá Bảo
Be the first to comment