Thể tích trong phân chia khối đa diện

Bạn đang xem Thể tích trong phân chia khối đa diện. Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Thể tích trong phân chia khối đa diện
Thể tích trong phân chia khối đa diện

Tài liệu gồm 54 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VD – VDC, hướng dẫn giải bài toán tính thể tích trong phân chia khối đa diện.Trong các bài toán thể tích khối đa diện diện, một số bài toán vận dụng hoặc vận dụng cao thường đề cập đến việc phân chia đa diện, tính thể tích khối đa diện mới theo thể tích khối đa diện đã cho.Thầy cô cần tạo tình huống cho học trò có tư duy về việc so sánh thể tích các khối chóp, khối lăng trụ từ những tư duy đơn giản như so sánh đường cao, so sánh diện tích đáy để đi đến quyết định chuyển những khối đa diện khó tính thể tích thành những khối dễ hơn, dễ so sánh với khối ban đầu. Cũng cần tạo cho học sinh quen với các bài toán tính thể tích các khối không cơ bản như chóp hoặc lăng trụ bằng cách phân chia thể tích với yêu cầu học sinh quan sát tốt để phân chia khối đa diện thành những khối dễ tính hơn với giả thiết được cho, từ đó hình thành các kĩ năng tổng hợp và có phản xạ tốt trong những bài phân chia đa diện.Trong phần thể tích khối đa diện việc ra đề và ôn tập cho học sinh thường được chú trọng đến các bài toán về phân chia khối đa diện thành các phần khác nhau. Việc phân chia và tính toán khối đa diện thường dựa vào tỷ số thể tích, dựa vào việc dựng thiết diện, dựa vào việc lấy thêm điểm thỏa mãn các hệ thức tỷ số hoặc vectơ.
[ads]
A. CÁC CÔNG THỨC TỈ SỐ THỂ TÍCH ÁP DỤNG
B. CÁC DẠNG BÀI VÀ VÍ DỤ MINH HỌA
+ Bài toán 1. Chia hình chóp, hình lăng trụ thành 2 phần bởi một mặt phẳng cho trước. Tính thể tích một trong hai phần hay tỉ số thể tích.
+ Bài toán 2. Tính thể tích khối đa diện được phát trển từ các khối cho trước bằng cách lấy thêm các điểm.
+ Bài toán 3. Giá trị lớn nhất – giá trị nhỏ nhất (GTLN – GTNN / max – min) thể tích các khối khi phân chia.
C. BÀI TẬP THEO CÁC DẠNG
+ Dạng toán 1. Chia hình chóp, hình lăng trụ thành 2 phần bởi một mặt phẳng cho trước. Tính thể tích một trong hai phần hay tỉ số thể tích.
+ Dạng toán 2. Chia hình chóp, hình lăng trụ thành các khối đa diện khác nhau bởi việc lấy thêm các điểm thỏa mãn điều kiện cho trước. Tính thể tích một trong hai khối đó.
+ Dạng toán 3. Giá trị lớn nhất – giá trị nhỏ nhất (GTLN – GTNN / max – min) thể tích các khối khi phân chia.Xem thêm

Bài viết liên quan:

Be the first to comment

Leave a Reply

Your email address will not be published.


*