Đề chọn HSG trường Toán 12 năm 2022 – 2023 trường chuyên Phan Bội Châu – Nghệ An

Bạn đang xem Đề chọn HSG trường Toán 12 năm 2022 – 2023 trường chuyên Phan Bội Châu – Nghệ An. Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề chọn HSG trường Toán 12 năm 2022 2023 trường chuyên Phan Bội Châu Nghệ An
Đề chọn HSG trường Toán 12 năm 2022 2023 trường chuyên Phan Bội Châu Nghệ An

TOANPDF.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán 12 năm học 2022 – 2023 trường THPT chuyên Phan Bội Châu, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm.Trích dẫn Đề chọn HSG trường Toán 12 năm 2022 – 2023 trường chuyên Phan Bội Châu – Nghệ An:
+ Có tám người ngồi quanh một bàn tròn. Mỗi người có một đồng xu đồng chất. Cả tám người cùng tung đồng xu của mình. Ai tung được mặt ngửa thì đứng dậy, còn ai tung được mặt sấp thì vẫn ngồi yên. Tính xác suất để không có hai người đứng cạnh nhau.
+ Cho hình chóp S ABC. Trên các cạnh SA SB SC lần lượt lấy các điểm D E F (khác S). Gọi M là điểm chung của ba mặt phẳng ABF BCD CAE. Đường thẳng SM lần lượt cắt các mặt phẳng (ABC) và (DEF) tại P và N. Chứng minh rằng 3 NP MP NS MS.
+ Cho hình lăng trụ ABC A B C có đáy là tam giác đều cạnh bằng 3 a cạnh bên bằng 2 a hình chiếu vuông góc của A’ lên mặt phẳng ABC thuộc cạnh AB và góc giữa mặt phẳng A ACC và đáy bằng arctan 2. a) Tính theo a thể tích khối lăng trụ ABC A B C. b) Gọi G là trọng tâm tam giác ABC. Tính sin của góc giữa đường thẳng AG’ và mặt phẳng.

Bài viết liên quan:

Be the first to comment

Leave a Reply

Your email address will not be published.


*