Tài liệu gồm 72 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) cực trị của hàm số, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 1 (ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán.Các dạng bài tập trắc nghiệm VDC cực trị của hàm số:
A. KIẾN THỨC CƠ BẢN CẦN NẮM
1. Khái niệm cực trị của hàm số.
2. Điều kiện cần để hàm số đạt cực trị.
3. Điều kiện đủ để hàm số đạt cực trị.
B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP
Dạng 1. Cho hàm số f(x) hoặc f'(x). Tìm điểm cực trị, giá trị cực trị.
Dạng 2. Tìm (điểm) cực trị thông qua bảng xét dấu, bảng biến thiên của đạo hàm.
Dạng 3. Tìm (điểm) cực trị thông qua đồ thị f(x), f'(x), f”(x).
Dạng 4. Cực trị hàm bậc ba.
Dạng 5. Cực trị hàm bậc bốn trùng phương.
Dạng 6. Cực trị hàm phân thức hữu tỉ.
Dạng 7. Cực trị của hàm chứa căn thức.
Dạng 8. Cực trị của hàm bậc cao và hàm lượng giác.
Dạng 9. Tìm cực trị của hàm số chứa trị tuyệt đối.
Dạng 10. Tìm cực trị của hàm số trị tuyệt đối nếu biết bảng biến thiên hoặc đồ thị.
Dạng 11. Một số bài toán sử dụng phép dịch chuyển đồ thị.
Dạng 12. Định tham số để hàm số chứa dấu trị tuyệt đối có n điểm cực trị.
Dạng 13. Cho bảng biến thiên, định giá trị tham số để hàm số trị tuyệt đối có n điểm cực trị.
Dạng 14. Cho đồ thị, định tham số để có hàm số có n điểm cực trị.
Dạng 15. Biết được đồ thị của hàm số f(x) tìm (số điểm) cực trị của hàm ẩn.
Dạng 16. Tìm (số điểm) cực trị hàm ẩn biết đồ thị của hàm số f'(x).
Dạng 17. Biết được f'(x) hoặc bảng xét dấu, bảng biến thiên của f'(x), tìm số điểm cực trị của hàm ẩn.
Các dạng bài tập trắc nghiệm VDC cực trị của hàm số
Bạn đang xem Các dạng bài tập trắc nghiệm VDC cực trị của hàm số.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Chuyên đề khảo sát và vẽ đồ thị hàm số ôn thi THPT 2021 - Nguyễn Bảo Vương
Bài giảng ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Toán 12 KNTTVCS
Chuyên đề giá trị lớn nhất và giá trị nhỏ nhất của hàm số từ cơ bản đến nâng cao
Luyện thi THPTQG môn Toán chủ đề ứng dụng đạo hàm và khảo sát đồ thị hàm số
Chuyên đề khảo sát hàm số Toán 12: Nhận dạng đồ thị hàm số
Các dạng toán về hàm ẩn liên quan đến tính đơn điệu của hàm số
Tài liệu chuyên đề sự tương giao của đồ thị các hàm số
Các dạng toán về hàm ẩn liên quan đến cực trị của hàm số
Be the first to comment