TOANPDF.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán cấp THPT vòng tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; đề gồm hai bài thi: Sáng và Chiều; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 08 tháng 01 năm 2023.Trích dẫn Đề chọn học sinh giỏi Toán THPT vòng tỉnh năm 2022 – 2023 sở GD&ĐT Vĩnh Long:
+ Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh?
+ Cho hình chóp tứ giác đều S.ABCD tâm O có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60°. Gọi M là điểm đối xứng của C qua D, N là trung điểm SC. a) Tính khoảng cách từ O đến mặt phẳng (SAD). b) Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tính tỉ số thể tích giữa hai phần (phần lớn trên phần bé).
+ Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(-3;1) và đường tròn (C): x2 + y2 − 2x − 6y + 6 = 0. Gọi T1, T2 là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Tính khoảng cách từ O đến đường thẳng T1T2.
Đề chọn học sinh giỏi Toán THPT vòng tỉnh năm 2022 – 2023 sở GD&ĐT Vĩnh Long
Bạn đang xem Đề chọn học sinh giỏi Toán THPT vòng tỉnh năm 2022 – 2023 sở GD&ĐT Vĩnh Long.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 - 2020 sở GD&ĐT Hưng Yên
Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 - 2025 sở GD&ĐT Sóc Trăng
Đề khảo sát HSG Toán 12 đợt 2 năm 2024 - 2025 trường THPT Quỳnh Lưu 4 - Nghệ An
Đề học sinh giỏi MTCT Toán THPT năm 2022 - 2023 sở GD&ĐT Vĩnh Long
Đề thi chọn HSG cấp huyện Toán 12 năm 2020 - 2021 sở GD&ĐT Cao Bằng
Đề chọn học sinh giỏi Toán 12 năm 2020 - 2021 sở GD&ĐT Hải Phòng (Bảng B)
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2024 - 2025 sở GD&ĐT Hải Dương
Đề thi thử HSG Toán 12 lần 2 năm 2024 - 2025 trường THPT Nguyễn Bính - Nam Định
Be the first to comment