Đề cương học kỳ 2 Toán 12 năm 2022 – 2023 trường THPT Bắc Thăng Long – Hà Nội

Bạn đang xem Đề cương học kỳ 2 Toán 12 năm 2022 – 2023 trường THPT Bắc Thăng Long – Hà Nội. Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề cương học kỳ 2 Toán 12 năm 2022 2023 trường THPT Bắc Thăng Long Hà Nội
Đề cương học kỳ 2 Toán 12 năm 2022 2023 trường THPT Bắc Thăng Long Hà Nội

TOANPDF.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề cương ôn tập cuối học kỳ 2 môn Toán 12 năm học 2022 – 2023 trường THPT Bắc Thăng Long, thành phố Hà Nội.Trích dẫn Đề cương học kỳ 2 Toán 12 năm 2022 – 2023 trường THPT Bắc Thăng Long – Hà Nội:
+ Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu (S1), (S2) lần lượt có phương trình là x2 + y2 + z2 − 2x − 2y − 2z − 22 = 0, x2 + y2 + z2 − 6x + 4y + 2z + 5 = 0. Xét các mặt phẳng (P) thay đổi nhưng luôn tiếp xúc với cả hai mặt cầu đã cho. Gọi M (a; b; c) là điểm mà tất cả các mặt phẳng (P) đi qua. Tính tổng S = a + b + c.
+ Cho hàm số có bảng xét dấu của đạo hàm như sau: x f 0 (x) −∞ 1 3 5 +∞ − 0 + 0 − 0 +. Đặt g(x) = f(x + 2) + 13×3 − 2×2 + 3x + 2019. Khẳng định nào sau đây đúng? A. Hàm số y = g(x) đạt cực đại tại x = 1. B. Hàm số y = g(x) có 1 điểm cực trị. C. Hàm số y = g(x) nghịch biến trên khoảng (1; 4). D. g(5) > g(6) và g(0) > g(1).
+ Ông An có một khu vườn giới hạn bởi đường parabol và đường thẳng. Nếu đặt trong hệ tọa độ Oxy như hình vẽ thì parabol có phương trình y = x2 và đường thẳng là y = 25. Ông An dự định dùng một mảnh vườn nhỏ được chia từ khu vườn bởi đường thẳng đi qua điểm O và M trên parabol để trồng một loại hoa. Hãy giúp ông An xác định điểm M bằng cách tính độ dài OM để diện tích mảnh vườn nhỏ bằng 9 2.

Bài viết liên quan:

Be the first to comment

Leave a Reply

Your email address will not be published.


*