TOANPDF.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT & GDTX năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023.Trích dẫn Đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2022 – 2023 sở GD&ĐT Đắk Lắk:
+ Cho hàm số y = f(x) = x3 − 3×2 + mx + 1 có đồ thị (Cm) với m là tham số. 1) Tìm tất cả các giá trị thực của m để đồ thị (Cm) có hai điểm cực trị. 2) Khi (Cm) có hai điểm cực trị A và B, tìm m để khoảng cách từ điểm là I đến đường thẳng AB lớn nhất.
+ Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn (O). Gọi S là tập hợp các đường thẳng đi qua 2 đỉnh bất kỳ của đa giác. Chọn ngẫu nhiên hai đường thẳng từ tập S. Tìm xác suất để chọn được hai đường thẳng có giao điểm nằm trong đường tròn (O).
+ Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA = AB = a, SB = SD. Lấy M là điểm tùy ý trên đoạn thẳng OA (M khác O và A). Mặt phẳng (a) qua M, song song với SA và BD, cắt AB, SB, SD, AD lần lượt tại E, F, G, H. 1) Tứ giác EFGH là hình gì? Vì sao? 2) Xác định vị trí của M để diện tích tứ giác EFGH đạt giá trị lớn nhất.
Đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2022 – 2023 sở GD&ĐT Đắk Lắk
Bạn đang xem Đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2022 – 2023 sở GD&ĐT Đắk Lắk.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề học sinh giỏi tỉnh Toán 12 năm 2023 - 2024 sở GD&ĐT Hà Tĩnh
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GD&ĐT Quảng Ninh
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 - 2024 sở GD&ĐT Khánh Hòa
Đề thi HSG tỉnh Toán 12 năm 2019 - 2020 sở GD&ĐT Lâm Đồng
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GD&ĐT Hòa Bình
Đề học sinh giỏi Toán 12 lần 2 năm 2023 - 2024 trường THPT Nguyễn Thị Giang - Vĩnh Phúc
Đề HSG Toán 12 và lập đội tuyển thi HSG QG năm 2023 - 2024 sở GD&ĐT Hà Nam
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 - 2021 sở GD&ĐT Hưng Yên
Be the first to comment