Đề thi chọn học sinh giỏi Toán 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên

Bạn đang xem Đề thi chọn học sinh giỏi Toán 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên. Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề thi chọn học sinh giỏi Toán 11 năm 2019 2020 sở GD&ĐT Thái Nguyên
Đề thi chọn học sinh giỏi Toán 11 năm 2019 2020 sở GD&ĐT Thái Nguyên

Thứ Sáu ngày 29 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh môn Toán 11 năm học 2019 – 2020.Đề thi chọn học sinh giỏi Toán 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút.Trích dẫn đề thi chọn học sinh giỏi Toán 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên:
+ Cho tam giác ABC có ba góc nhọn (AB < BC < AC) nội tiếp đường tròn (O;R). Vẽ đường tròn tâm O’ lần lượt tiếp xúc với các cạnh BC, AC tại D, E và tiếp xúc trong với đường tròn (O;R) tại T. Đường thẳng TD cắt đường tròn (O;R) tại K (K khác T). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh KC = KB và ba điểm D, I, E thẳng hàng.
[ads]
+ Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng đáy và SA = 2a. Mặt phẳng (P) chứa BC và cắt các cạnh SA, SD lần lượt tại M, N. Góc giữa đường thẳng AC và (P) bằng 30 độ. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD.
+ Cho tập hợp X = {1;2;3;4;…;3^n}. Chứng minh rằng, với mọi số tự nhiên n ≥ 2 luôn tồn tại tập con M của tập hợp X sao cho tập con M có 2n phần tử và không có ba phần tử nào lập thành một cấp số cộng.

Bài viết liên quan:

Be the first to comment

Leave a Reply

Your email address will not be published.


*