Thứ Tư ngày 23 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi THPT cấp Quốc gia năm 2021 môn Toán (vòng 1).Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1) được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề).Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1):
+ Cho tam giác nhọn không cân ABC có trực tâm H và nội tiếp đường tròn (O). Gọi E, F lần lượt là chân đường cao hạ từ B, C của tam giác ABC. M là giao điểm của đường tròn ngoại tiếp tam giác AEF với đường tròn (O) (M không trùng A). Đường thẳng BH cắt đường tròn (O) tại D (D không trùng B). I là trung điểm BC.
a) Chứng minh rằng ba đường thẳng AM, EF, BC đồng quy tại một điểm.
b) Đường tròn ngoại tiếp tam giác HEI cắt BC tại N (N không trùng I). Đường thẳng EN cắt đường thẳng qua H và song song với BC tại K. Chứng minh rằng bốn điểm M, H, K, D cùng thuộc một đường tròn.
+ Cho n là một số nguyên dương, xét tập hợp S = {1,2,3,…,n}. Gọi p, q lần lượt là số tập con khác rỗng của S và có số phần tử là chẵn, lẻ. Chứng minh rằng p – q = -1.
+ Cho m, n là các số nguyên dương và một bảng hình chữ nhật kẻ ô vuông cóm hàng và n cột (nghĩa là bảng gồm m x n ô vuông). Xét các tập hợp T khác rỗng gồm một số các ô vuông thuộc bảng trên sao cho mỗi hàng và mỗi cột của bảng đều có chứa ít nhất một ô vuông của T. Gọi p là số các tập hợp T có số phần tử là số chẵn và q là số các tập hợp T có số phần tử là số lẻ. Chứng minh rằng p – q = (-1)m+n+1.
Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1)
Bạn đang xem Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1).
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 - 2023 sở GD&ĐT Thanh Hóa
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GD&ĐT Lâm Đồng
Đề chọn HSG thành phố Toán 12 năm 2019 - 2020 sở GD&ĐT Hải Phòng
Đề thi chọn học sinh giỏi Toán 12 THPT năm 2020 - 2021 sở GD&ĐT Hà Nội
Đề chọn học sinh giỏi tỉnh Toán 12 năm 2019 - 2020 sở GD&ĐT Bình Định
Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THCS & THPT Như Xuân - Thanh Hóa
Đề học sinh giỏi Toán 12 chuyên năm 2023 - 2024 sở GD&ĐT Vĩnh Phúc
Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 - 2025 sở GD&ĐT Nam Định
Be the first to comment