Đề thi chọn học sinh giỏi Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội

Bạn đang xem Đề thi chọn học sinh giỏi Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội. Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề thi chọn học sinh giỏi Toán 12 THPT năm 2020 2021 sở GD&ĐT Hà Nội
Đề thi chọn học sinh giỏi Toán 12 THPT năm 2020 2021 sở GD&ĐT Hà Nội

Sáng thứ Ba ngày 29 tháng 09 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp thành phố lớp 12 THPT năm học 2020 – 2021 môn thi Toán.Đề thi chọn học sinh giỏi Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút; qua khảo sát ý kiến của một số thầy, cô giáo và các em học sinh, đề thi năm nay không quá khó (so với các năm học trước).Trích dẫn đề thi chọn học sinh giỏi Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội:
+ Cho hàm số y = x^3 – 3/2mx^2 + m^3 có đồ thị (C). Tìm tất cả các giá trị của tham số m để đồ thị hàm số có hai điểm cực trị A, B sao cho tam giác ABO có diện tích bằng 32 (với O là gốc tọa độ).
+ Cho đa giác đều 30 đỉnh A1, A2 … A30. Hỏi có bao nhiêu tam giác có 3 đỉnh là 3 điểm trong 30 điểm A1, A2 … A30 đồng thời không có cạnh nào là cạnh của đa giác.
+ Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt trên các cạnh AB, A’D’ sao cho đường thẳng MN tạo với mặt phẳng (ABCD) một góc bằng 60 độ.
1) Tính độ dài đoạn thẳng MN.
2) Tìm giá trị lớn nhất của khoảng cách giữa hai đường thẳng MN và CC’.

Spread the love
Rate this post

Bài viết liên quan:

Hãy bình luận đầu tiên

Để lại một phản hồi

Thư điện tử của bạn sẽ không được hiện thị công khai.


*