Tài liệu gồm 867 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tổng hợp lý thuyết, các dạng toán và bài tập từ cơ bản đến nâng cao các chuyên đề Toán 11, có đáp án và lời giải chi tiết.PHẦN 1. ĐẠI SỐ VÀ GIẢI TÍCH 11.
CHƯƠNG 1. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC.
BÀI 1. HÀM SỐ LƯỢNG GIÁC.
Dạng 1. Tìm tập xác đinh của hàm số.
Dạng 2. Xét tính chẵn lẻ của hàm số.
Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác.
Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó.
BÀI 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN.
BÀI 3. MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP.
Dạng 1. Phương trình bậc nhất đối với một hàm số lượng giác.
Dạng 2. Phương trình bậc nhất đối với sin x và cos x.
Dạng 3. Phương trình bậc hai đối với một hàm số lượng giác.
Dạng 4. Phương trình bậc hai đối với sin x và cos x.
Dạng 5. Phương trình chứa sin x ± cos x và sin x . cos x.CHƯƠNG 2. TỔ HỢP VÀ XÁC SUẤT.
BÀI 1. QUY TẮC ĐẾM.
Dạng 1. Quy tắc cộng.
Dạng 2. Quy tắc nhân.
BÀI 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP.
Dạng 1. Hoán vị.
Dạng 2. Chỉnh hợp.
Dạng 3. Tổ hợp.
Dạng 4. Phương trình – bất phương trình.
BÀI 3. NHỊ THỨC NIU-TƠN.
Dạng 1. Xác định hệ số hoặc số hạng chứa x^k.
Dạng 2. Tìm số hạng đứng chính giữa.
Dạng 3. Tìm hệ số lớn nhất trong khai triển nhị thức Niu-tơn của (a + b)^n.
Dạng 4. Tìm số hạng hữu tỉ trong khai triển (a + b)^n.
Dạng 5. Tính tổng hoặc chứng minh đẳng thức.
BÀI 4 – 5. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ.
Dạng 1. Tính xác suất dựa vào định nghĩa cổ điển.
Dạng 2. Quy tắc tính xác suất.CHƯƠNG 3. DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN.
BÀI 1. PHƯƠNG PHÁP QUY NẠP TOÁN HỌC.
Dạng 1. Chứng minh đẳng thức.
Dạng 2. Chứng minh bất đẳng thức.
Dạng 3. Chứng minh một tính chất.
Dạng 4. Một số bài toán khác.
BÀI 2. DÃY SỐ.
Dạng 1. Tìm số hạng của dãy số.
Dạng 2. Tính tăng giảm và bị chặn của dãy số.
BÀI 3. CẤP SỐ CỘNG.
Dạng 1. Xác định cấp số cộng, công sai và số hạng của cấp số cộng.
Dạng 2. Tính tổng các số hạng trong một cấp số cộng.
Dạng 3. Chứng minh một hệ thức trong cấp số cộng.
Dạng 4. Giải phương trình (tìm x trong cấp số cộng).
BÀI 4. CẤP SỐ NHÂN.
Dạng 1. Xác định cấp số nhân, số hạng, công bội của cấp số nhân.
Dạng 2. Tính tổng của cấp số nhân.
Dạng 3. Các bài toán thực tế.CHƯƠNG 4. GIỚI HẠN.
BÀI 1. GIỚI HẠN DÃY SỐ.
Dạng 1. Sử dụng nguyên lý kẹp.
Dạng 2. Giới hạn hữu tỉ.
Dạng 3. Dãy số chứa căn thức.
Dạng 4. Dãy số chứa hàm lũy thừa.
Dạng 5. Tổng của cấp số nhân lùi vô hạn.
Dạng 6. Giới hạn dãy số có quy luật công thức, dãy cho bởi hệ thức truy hồi.
BÀI 2. GIỚI HẠN HÀM SỐ.
Dạng 1. Dãy số có giới hạn hữu hạn.
Dạng 2. Giới hạn một bên.
Dạng 3. Giới hạn tại vô cực.
Dạng 4. Dạng vô định 0/0.
Dạng 5. Dạng vô định vô cực / vô cực.
Dạng 6. Dạng vô định vô cực – vô cực, 0 . vô cực.
BÀI 3. HÀM SỐ LIÊN TỤC.
Dạng 1. Xét tính liên tục của hàm số.
Dạng 2. Hàm số liên tục tại một điểm.
Dạng 3. Hàm số liên tục trên một khoảng.
Dạng 4. Số nghiệm của phương trình trên một khoảng.CHƯƠNG 5. ĐẠO HÀM.
BÀI 1. ĐỊNH NGHĨA VÀ Ý NGHĨA ĐẠO HÀM.
Dạng 1. Tính đạo hàm bằng định nghĩa.
Dạng 2. Số gia của hàm số.
Dạng 3. Ý nghĩa vật lý của đạo hàm.
Dạng 4. Phương trình tiếp tuyến.
BÀI 2. QUY TẮC TÍNH ĐẠO HÀM.
Dạng 1. Đạo hàm của hàm đa thức.
Dạng 2. Đạo hàm của hàm phân thức.
Dạng 3. Đạo hàm của hàm chứa căn.
BÀI 3. ĐẠO HÀM HÀM SỐ LƯỢNG GIÁC.
Dạng 1. Tính đạo hàm của các hàm số lượng giác.
Dạng 2. Tính đạo hàm tại một điểm.
Dạng 3. Giải phương trình f’(x) = 0.
BÀI 4. VI PHÂN.
Dạng 1. Tìm vi phân của hàm số y = f(x).
Dạng 2. Tính gần đúng giá trị của một biểu thức.
BÀI 5. ĐẠO HÀM CẤP HAI.
Dạng 1. Tính đạo hàm cấp cao của hàm số y = f(x).
Dạng 2. Tìm đạo hàm cấp n của hàm số y = f(x).PHẦN 2. HÌNH HỌC 11.
CHƯƠNG 1. PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG.
BÀI 1. PHÉP BIẾN HÌNH.
Dạng 1. Xác định ảnh của một hình qua một phép biến hình.
Dạng 2. Tìm điểm bất động của phép biến hình.
BÀI 2. PHÉP TỊNH TIẾN.
Dạng 1. Xác định ảnh của một hình qua một phép tịnh tiến.
Dạng 2. Dùng phép tịnh tiến để tìm tập hợp điểm di động.
Dạng 3. Dùng phép tịnh tiến để dựng hình.
BÀI 3. PHÉP ĐỐI XỨNG TRỤC.
Dạng 1. Xác định ảnh của một hình qua phép đối xứng trục.
Dạng 2. Tìm trục đối xứng của một hình.
Dạng 3. Tìm tập hợp điểm.
Dạng 4. Dùng phép đối xứng trục để dựng hình.
BÀI 4. PHÉP ĐỐI XỨNG TÂM.
Dạng 1. Tìm ảnh của một điểm, một đường qua phép đối xứng tâm.
Dạng 2. Chứng minh một hình H có tâm đối xứng.
Dạng 3. Dùng phép đối xứng tâm để dựng hình.
BÀI 5. PHÉP QUAY.
Dạng 1. Chứng minh điểm M’ là ảnh của điểm M trong một phép quay.
Dạng 2. Tìm ảnh của một đường thẳng, đường tròn qua một phép quay.
Dạng 3. Dựng hình bằng phép quay.
BÀI 6. KHÁI NIỆM PHÉP DỜI HÌNH VÀ HAI HÌNH BẰNG NHAU.
BÀI 7. PHÉP VỊ TỰ.
Dạng 1. Xác định phép vị tự biến điểm M cho sẵn thành điểm M’ cho sẵn.
Dạng 2. Dùng phép vị tự để tìm tập hợp điểm.
Dạng 3. Dùng phép vị tự để dựng hình.
BÀI 8. PHÉP ĐỒNG DẠNG.
Dạng 1. Xác định các yếu tố cơ bản của phép đồng dạng.
Dạng 2. Tìm ảnh của một điểm M qua một phép đồng dạng.
Dạng 3. Chứng minh hai hình H và H’ đồng dạng.
Dạng 4. Tìm tập hợp các điểm M’ là ảnh của điểm M qua một phép đồng dạng.CHƯƠNG 2. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN, QUAN HỆ SONG SONG.
BÀI 1. ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG.
Dạng 1. Dạng toán lý thuyết.
Dạng 2. Tìm giao tuyến của hai mặt phẳng.
Dạng 3. Tìm giao điểm của đường thẳng và mặt phẳng.
Dạng 4. Thiết diện.
Dạng 5. Ba điểm thẳng hàng ba đường thẳng đồng quy.
Dạng 6. Tìm tập hợp giao điểm của hai đường thẳng.
BÀI 2. HAI ĐƯỜNG THẲNG CHÉO NHAU VÀ HAI ĐƯỜNG THẲNG SONG SONG.
Dạng 1. Câu hỏi lý thuyết.
Dạng 2. Chứng minh hai đường thẳng song song.
Dạng 3. Tìm giao tuyến của hai mặt phẳng.
Dạng 4. Bài tập ứng dụng.
BÀI 3. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG.
Dạng 1. Câu hỏi lý thuyết.
Dạng 2. Chứng minh đường thẳng a song song với mặt phẳng (P).
Dạng 3. Tìm giao tuyến của hai mặt phẳng. Thiết diện qua một điểm và song song với một đường thẳng.
Dạng 4. Bài tập ứng dụng.
BÀI 4. HAI MẶT PHẲNG SONG SONG.
Dạng 1. Bài toán lý thuyết.
Dạng 2. Chứng minh hai mặt phẳng song song.
Dạng 3. Tìm giao tuyến của hai mặt phẳng và tìm thiết diện qua một điểm và song song với một mặt phẳng.
Dạng 4. Tìm thiết diện của lăng trụ, hình chóp cụt.
Dạng 5. Bài tập áp dụng.
BÀI 5. PHÉP CHIẾU SONG SONG.
Dạng 1. Vẽ hình biểu diễn của một hình trong không gian.
Dạng 2. Các bài toán liên quan đến phép chiếu song song.CHƯƠNG 3. VECTƠ TRONG KHÔNG GIAN, QUAN HỆ VUÔNG GÓC.
BÀI 1. VECTƠ TRONG KHÔNG GIAN.
Dạng 1. Biểu diễn vectơ.
Dạng 2. Đẳng thức vectơ.
Dạng 3. Đồng phẳng của ba vectơ.
Dạng 4. Tìm điểm thỏa mãn đẳng thức vectơ.
BÀI 2. HAI ĐƯỜNG THẲNG VUÔNG GÓC.
Dạng 1. Tính góc giữa hai đường thẳng.
Dạng 2. Chứng minh hai đường thẳng vuông góc trong không gian.
BÀI 3. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG.
Dạng 1. Câu hỏi lý thuyết.
Dạng 2. Chứng minh đường thẳng vuông góc với mặt phẳng. Từ đó suy ra đường thẳng vuông góc với đường thẳng.
Dạng 3. Xác định góc – hình chiếu – tính độ dài.
Dạng 4. Thiết diện.
BÀI 4. HAI MẶT PHẲNG VUÔNG GÓC.
Dạng 1. Câu hỏi lý thuyết.
Dạng 2. Chứng minh hai mặt phẳng vuông góc.
Dạng 3. Tính góc giữa hai mặt phẳng.
Dạng 4. Thiết diện.
BÀI 5. KHOẢNG CÁCH.
Dạng 1. Khoảng cách từ một điểm đến đường thẳng.
Dạng 2. Khoảng cách từ một điểm đến mặt phẳng.
Dạng 3. Khoảng cách giữa hai mặt phẳng song song, khoảng cách từ đường thẳng đến mặt phẳng.
Dạng 4. Khoảng cách giữa hai đường thẳng chéo nhau.
Bài giảng Toán 11 từ cơ bản đến nâng cao
Bạn đang xem Bài giảng Toán 11 từ cơ bản đến nâng cao.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề cương ôn tập học kỳ 1 Toán 11 năm 2019 - 2020 trường THPT Việt Đức - Hà Nội
Đề cương học kì 1 Toán 11 năm 2022 - 2023 trường chuyên Bảo Lộc - Lâm Đồng
Đề cương ôn tập học kỳ 1 Toán 11 năm 2020 - 2021 trường THPT Kim Liên - Hà Nội
Đề cương Toán 11 giữa kỳ 1 năm 2023 - 2024 trường Nguyễn Tất Thành - Hà Nội
Tài liệu học tập Toán 11 học kì 1 sách Chân Trời Sáng Tạo
Nội dung ôn tập cuối kì 1 Toán 11 năm 2022 - 2023 trường THPT Trần Phú - Hà Nội
Đề cương ôn tập HK1 Toán 11 năm 2019 - 2020 trường Chu Văn An - Hà Nội
Bài tập trắc nghiệm Toán 11 học kỳ 1 có đáp án - Trần Quốc Nghĩa
Be the first to comment