Tài liệu gồm 34 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) tính đơn điệu của hàm số, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 1 (ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán.Các dạng bài tập trắc nghiệm VDC tính đơn điệu của hàm số:
A. KIẾN THỨC CƠ BẢN CẦN NẮM
B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP
Dạng 1. Tìm các khoảng đơn điệu của hàm số cho bởi công thức y = f(x).
Dạng 2. Xét tính đơn điệu của hàm số y = f(x) khi cho hàm số y = f'(x).
Dạng 3. Tìm tham số để hàm số đơn điệu trên tập xác định.
Dạng 4. Xét tính đơn điệu hàm số bậc cao, căn thức, lượng giác có chứa tham số.
Dạng 5. Xét tính đơn điệu của hàm số trên trên khoảng cho trước.
Dạng 6. Phương pháp cô lập tham số m, phương pháp hàm số.
Dạng 7. Tìm khoảng đồng biến, nghịch biến của hàm số y = f(x), y = f(u(x)), y = f(u(x)) ± h(x) … khi biết bảng biến thiên của hàm số.
Dạng 8. Tìm khoảng đồng, biến nghịch biến của hàm số y = f(x), y = f(u(x)) khi biết đồ thị của hàm số y = f(x).
Dạng 9. Tìm khoảng đồng biến, nghịch biến của hàm số y = f(x), y = f(u(x)), y = f(u(x)) ± h(x) … khi biết đồ thị của hàm số y = f'(x).
Dạng 10. Ứng dụng tính đơn điệu vào giải phương trình, bất phương trình, tìm điều kiện có nghiệm của phương trình.Xem thêm:
+
+
+
Các dạng bài tập trắc nghiệm VDC tính đơn điệu của hàm số
Bạn đang xem Các dạng bài tập trắc nghiệm VDC tính đơn điệu của hàm số.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Tài liệu chuyên đề đường tiệm cận của đồ thị hàm số
Bộ đề ôn tập theo từng chủ đề khảo sát hàm số Toán 12
Chuyên đề tính đơn điệu của hàm số
50 bài tập trắc nghiệm cực trị hàm hợp có đáp án và lời giải chi tiết
Ôn kiến thức, luyện kỹ năng bài giảng cực trị của hàm số
Các dạng toán về hàm ẩn liên quan đến hàm số
Bài tập khảo sát sự biến thiên và vẽ đồ thị hàm số - Diệp Tuân
Tóm tắt lý thuyết và bài tập trắc nghiệm tiếp tuyến của đồ thị hàm số
Be the first to comment