TOANPDF.COM giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 tài liệu các dạng toán về hàm ẩn liên quan đến bài toán xét tính đơn điệu của hàm số, nhằm hỗ trợ công tác giảng dạy và học tập chương trình Giải tích lớp 12 chương 1 (ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số) và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán.Tài liệu gồm 103 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Toán VD – VDC, bao gồm các bài tập trắc nghiệm về hàm ẩn liên quan đến tính đơn điệu của hàm số, có đáp án và lời giải chi tiết.Khái quát nội dung tài liệu các dạng toán về hàm ẩn liên quan đến tính đơn điệu của hàm số:
PHẦN 1: Biết đặc điểm của hàm số $y=fleft( x right).$
Dạng toán 1. Các bài toán về tính đơn điệu của hàm ẩn bậc $2$ (dành cho khối 10).
Dạng toán 2. Dạng toán có thể tìm được biểu thức cụ thể của hàm số $y=fleft( x right)$ trong bài toán không chứa tham số.
Dạng toán 3. Dạng toán có thể tìm được biểu thức cụ thể của hàm số $y=fleft( x right)$ trong bài toán chứa tham số.
Dạng toán 4. Biết đặc điểm của hàm số hoặc đồ thị, hoặc BBT hoặc đạo hàm của hàm $fleft( x right)$, xét sự biến thiên của hàm $y=fleft( varphi left( x right) right)$, $y=fleft( fleft( x right) right)$, $y=fleft( fleft( f…left( x right) right) right)$ trong bài toán không chứa tham số.
Dạng toán 5. Biết đặc điểm của hàm số hoặc BBT, hoặc BBT hoặc đạo hàm của hàm $fleft( x right)$, xét sự biến thiên của hàm $y=fleft( fleft( x right) right)$, $y=fleft( fleft( f…left( x right) right) right)$ trong bài toán chứa tham số.
Dạng toán 6. Biết đặc điểm của hàm số hoặc BBT, hoặc đồ thị, hoặc đạo hàm của hàm $fleft( x right)$, xét sự biến thiên của hàm $y=ln left( fleft( x right) right)$, $y={{e}^{fleft( x right)}}$, $sin fleft( x right)$, $cos fleft( x right)$ trong bài toán không chứa tham số.
Dạng toán 7. Biết đặc điểm của hàm số hoặc BBT, hoặc đồ thị, hoặc đạo hàm của hàm $fleft( x right)$, xét sự biến thiên của hàm $y=ln left( fleft( x right) right)$, $y={{e}^{fleft( x right)}}$, $sin fleft( x right)$, $cos fleft( x right)$ trong bài toán chứa tham số.
Dạng toán 8. Các dạng khác với các dạng đã đưa ra.PHẦN 2: Biết biểu thức của hàm số $y=f’left( x right).$
Dạng toán 9. Biết biểu thức hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)$ $=fleft( x right)+hleft( x right)$ trong bài toán không chứa tham số.
Dạng toán 10. Biết biểu thức hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)$ $=fleft( x right)+hleft( x right)$ trong bài toán chứa tham số.
Dạng toán 11. Biết biểu thức hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)$ $=fleft( uleft( x right) right)$ trong bài toán không chứa tham số.
Dạng toán 12. Biết biểu thức hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)$ $=fleft( uleft( x right) right)$ trong bài toán chứa tham số.
Dạng toán 13. Biết biểu thức hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)$ $=fleft( uleft( x right) right)+hleft( x right)$ trong bài toán không chứa tham số.
Dạng toán 14. Biết biểu thức hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)$ $=fleft( uleft( x right) right)+hleft( x right)$ trong bài toán chứa tham số.
Dạng toán 15. Biết biểu thức của hàm số $y={f}’left( x right)$, xét tính đơn điệu của hàm số $y=gleft( x right)$ $=fleft( uleft( x right) right)+fleft( vleft( x right) right)+hleft( x right)$ trong bài toán không chứa tham số.
Dạng toán 16. Biết biểu thức của hàm số $y={f}’left( x right)$, xét tính đơn điệu của hàm số $y=gleft( x right)$ $=fleft( uleft( x right) right)+fleft( vleft( x right) right)+hleft( x right)$ trong bài toán chứa tham số.
Dạng toán 17. Biết biểu thức hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)$ $={{left[ fleft( uleft( x right) right) right]}^{k}}$ trong bài toán không chứa tham số.
Dạng toán 18. Biết biểu thức hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)$ $={{left[ fleft( uleft( x right) right) right]}^{k}}$ trong bài toán chứa tham số.
Dạng toán 19. Biết biểu thức hàm số $y={f}’left( uleft( x right) right)$ xét tính đơn điệu của hàm số $y=fleft( x right)$ trong bài toán không chứa tham số.
Dạng toán 20. Biết biểu thức hàm số $y={f}’left( uleft( x right) right)$ xét tính đơn điệu của hàm số $y=fleft( x right)$ trong bài toán chứa tham số.
Dạng toán 21. Biết biểu thức của hàm số $y={f}’left( x right)$, xét tính đơn điệu của hàm số $y=gleft( x right).fleft( x right)$ trong bài toán không chứa tham số.
Dạng toán 22. Biết biểu thức của hàm số $y={f}’left( x right)$, xét tính đơn điệu của hàm số $y=gleft( x right).fleft( x right)$ trong bài toán chứa tham số.
Dạng toán 23. Biết biểu thức của hàm số $y={f}’left( x right)$, xét tính đơn điệu của hàm số $y=gleft( x right).fleft( x right)$ trong bài toán không chứa tham số.
Dạng toán 24. Biết biểu thức của hàm số $y={f}’left( x right)$, xét tính đơn điệu của hàm số $y=gleft( x right).fleft( x right)$ trong bài toán chứa tham số.
Dạng toán 25. Biết biểu thức của hàm số $y={f}’left( x right)$, xét tính đơn điệu của hàm số $y=frac{gleft( x right)}{fleft( x right)}$ hoặc $y=frac{fleft( x right)}{gleft( x right)}$ trong bài toán không chứa tham số.
Dạng toán 26. Biết biểu thức của hàm số $y={f}’left( x right)$, xét tính đơn điệu của hàm số $y=frac{gleft( x right)}{fleft( x right)}$ hoặc $y=frac{fleft( x right)}{gleft( x right)}$ trong bài toán chứa tham số.PHẦN 3: Biết đồ thị của hàm số $y=f’left( x right).$
Dạng toán 27. Biết đồ thị hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)=fleft( x right)+hleft( x right)$ trong bài toán không chứa tham số.
Dạng toán 28. Biết đồ thị hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)=fleft( x right)+hleft( x right)$ trong bài toán chứa tham số.
Dạng toán 29. Biết đồ thị hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)=fleft( uleft( x right) right)$ trong bài toán không chứa tham số.
Dạng toán 30. Biết đồ thị hàm số $y={f}’left( x right)$ xét tính đơn điệu của hàm số $y=gleft( x right)=fleft( uleft( x right) right)$ trong bài toán chứa tham số.
Dạng toán 31. Biết đồ thị hàm số xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 32. Biết đồ thị hàm số xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 33. Biết đồ thị của hàm số, xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 34. Biết đồ thị của hàm số, xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 35. Biết đồ thị hàm số, xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 36. Biết đồ thị hàm số xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 37. Biết đồ thị hàm số xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 38. Biết đồ thị hàm số xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 39. Biết đồ thị của hàm số, xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 40. Biết đồ thị của hàm số, xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 41. Biết đồ thị của hàm số, xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 42. Biết đồ thị của hàm số, xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 43. Biết đồ thị của hàm số, xét tính đơn điệu của hàm số hoặc trong bài toán không chứa tham số.
Dạng toán 44. Biết đồ thị của hàm số, xét tính đơn điệu của hàm số hoặc trong bài toán chứa tham số.PHẦN 4: Biết bảng biến thiên của hàm số.
Dạng toán 45. Biết BBT hàm số xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 46. Biết BBT hàm số xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 47. Biết BBT hàm số xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 48. Biết BBT hàm số xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 49. Biết BBT hàm số xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 50. Biết BBT hàm số xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 51. Biết BBT của hàm số, xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 52. Biết BBT của hàm số, xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 53. Biết BBT hàm số xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 54. Biết BBT hàm số xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 55. Biết BBT hàm số xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 56. Biết BBT hàm số xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 57. Biết BBT của hàm số, xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 58. Biết BBT của hàm số, xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 59. Biết BBT của hàm số, xét tính đơn điệu của hàm số trong bài toán không chứa tham số.
Dạng toán 60. Biết BBT của hàm số, xét tính đơn điệu của hàm số trong bài toán chứa tham số.
Dạng toán 61. Biết BBT của hàm số, xét tính đơn điệu của hàm số hoặc trong bài toán không chứa tham số.
Dạng toán 62. Biết BBT của hàm số, xét tính đơn điệu của hàm số hoặc trong bài toán chứa tham số.
Các dạng toán về hàm ẩn liên quan đến tính đơn điệu của hàm số
Bạn đang xem Các dạng toán về hàm ẩn liên quan đến tính đơn điệu của hàm số.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Các dạng bài tập VDC ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số
Ôn kiến thức, luyện kỹ năng bài giảng cực trị của hàm số
GTLN - GTNN hàm hợp, hàm liên kết, hàm trị tuyệt đối - Đặng Việt Đông
Bài tập ứng dụng đạo hàm để khảo sát hàm số
Bài tập tương giao của hai đồ thị hàm số - Diệp Tuân
Cực trị hàm hợp và hàm liên kết (VD - VDC) - Đặng Việt Đông
Các dạng toán cực trị của hàm số thường gặp trong kỳ thi THPTQG
Hệ thống bài tập trắc nghiệm tương giao đồ thị hàm số cơ bản - vận dụng - vận dụng cao
Be the first to comment