Vừa qua, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp thành phố môn Toán lớp 12 THPT năm học 2020 – 2021; kỳ thi diễn ra vào các ngày 19/10/2020 (ngày thi thứ nhất) và 20/10/2020 (ngày thi thứ hai).Trích dẫn đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội:
+ Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC đồng quy tại điểm H. Đường thẳng EF cắt đường thẳng BC tại điểm S. Qua S kẻ các tiếp tuyến SX, SY tới đường tròn (O), với X, Y là các tiếp điểm.
a) Chứng minh D, X và Y là ba điểm thẳng hàng.
b) Gọi I là giao điểm của hai đường thẳng XY và EF. Chứng minh đường thẳng IH đi qua trung điểm của đoạn thẳng BC.
+ Cho tam giác ABC cân tại A (góc BAC < 90°) và M là trung điểm của đoạn thẳng AB. Lấy điểm N thuộc đoạn thẳng CM sao cho CBN = ACM.
a) Chứng minh đường tròn ngoại tiếp tam giác BCN tiếp xúc với đường tròn ngoại tiếp tam giác AMN.
b) Đoạn thẳng AC cắt đường tròn ngoại tiếp tam giác AMN tại điểm thứ hai P. Gọi I là trung điểm của đoạn thẳng BC. Chứng minh đường thẳng NP đi qua trung điểm của đoạn thẳng MI.
Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội
Bạn đang xem Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề HSG Toán cấp trường năm 2023 - 2024 trường chuyên Nguyễn Trãi - Hải Dương
Đề thi HSG Toán 12 (vòng 2) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Đề chọn học sinh giỏi Toán 12 năm 2024 - 2025 trường THPT Lương Ngọc Quyến - Thái Nguyên
Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 - 2025 sở GD&ĐT Lâm Đồng
Đề HSG Toán cấp trường lần 1 năm 2019 - 2020 trường Tiên Du 1 - Bắc Ninh
Đề KSCL HSG Toán THPT năm 2022 - 2023 trường THPT Hà Văn Mao - Thanh Hóa
Đề HSG Toán 12 lần 1 năm 2022 - 2023 trường THPT Quảng Xương 2 - Thanh Hóa
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GD&ĐT Cần Thơ
Be the first to comment