Vừa qua, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp thành phố môn Toán lớp 12 THPT năm học 2020 – 2021; kỳ thi diễn ra vào các ngày 19/10/2020 (ngày thi thứ nhất) và 20/10/2020 (ngày thi thứ hai).Trích dẫn đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội:
+ Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC đồng quy tại điểm H. Đường thẳng EF cắt đường thẳng BC tại điểm S. Qua S kẻ các tiếp tuyến SX, SY tới đường tròn (O), với X, Y là các tiếp điểm.
a) Chứng minh D, X và Y là ba điểm thẳng hàng.
b) Gọi I là giao điểm của hai đường thẳng XY và EF. Chứng minh đường thẳng IH đi qua trung điểm của đoạn thẳng BC.
+ Cho tam giác ABC cân tại A (góc BAC < 90°) và M là trung điểm của đoạn thẳng AB. Lấy điểm N thuộc đoạn thẳng CM sao cho CBN = ACM.
a) Chứng minh đường tròn ngoại tiếp tam giác BCN tiếp xúc với đường tròn ngoại tiếp tam giác AMN.
b) Đoạn thẳng AC cắt đường tròn ngoại tiếp tam giác AMN tại điểm thứ hai P. Gọi I là trung điểm của đoạn thẳng BC. Chứng minh đường thẳng NP đi qua trung điểm của đoạn thẳng MI.
Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội
Bạn đang xem Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Hà Nội.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề chọn đội tuyển thi HSG Toán Quốc gia 2020 - 2021 trường chuyên Bến Tre (lần 2)
Đề chọn học sinh giỏi Toán 12 năm 2024 - 2025 trường Quốc Học Quy Nhơn - Bình Định
Đề giao lưu học sinh giỏi Toán 12 năm 2022 - 2023 cụm trường THPT - Bắc Ninh
Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Chu Văn An - Thanh Hóa
Toàn cảnh đề thi HSG môn Toán các tỉnh thành năm học 2018 - 2019
Đề kiểm tra đội tuyển HSG lần 1 Toán 12 năm 2020 - 2021 trường THPT Vĩnh Lộc - Thanh Hóa
Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 - 2025 sở GD&ĐT Nam Định
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GD&ĐT Đồng Nai
Be the first to comment