Ngày … tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn đội dự tuyển thi học sinh giỏi Quốc gia năm 2021 môn Toán.Đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút.Trích dẫn đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai:
+ Cho tam giác ABC cân tại A, lấy điểm D thuộc cạnh AB khác A và B, gọi (O) là đường tròn ngoại tiếp tam giác BCD, tiếp tuyến của đường tròn (O) tại D cắt đường thẳng AC tại điểm E, vẽ tiếp tuyến EF của đường tròn (O) tại tiếp điểm F khác D. Gọi I là giao điểm của hai đường thẳng BF và CD, gọi K là giao điểm của hai đường thẳng AI và BC. Chứng minh BK = 2CK.
+ Một tổ gồm có 5 học sinh được phân công trực nhật 6 ngày trong tuần từ thứ hai đến thứ bảy thỏa mãn các điều kiện sau: Mỗi ngày đều có từ 1 đến nhiều nhất là 2 học sinh trực và trong cả tuần mỗi học sinh trực đúng 2 lần, mỗi lần trực 1 ngày. Tính số các cách phân công trực nhật của tổ thỏa mãn các điều kiện đã cho.
+ Cho dãy số (un) xác định bởi un+1 = un + 1/2021n với mọi n thuộc N*. Chứng minh rằng tồn tại số nguyên dương n sao cho un > 0.
Đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai
Bạn đang xem Đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GD&ĐT Bình Dương
Đề chọn đội tuyển Toán năm 2020 - 2021 trường THPT chuyên Trần Phú - Hải Phòng
Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 - 2021 sở GD&ĐT Quảng Trị
Đề học sinh giỏi tỉnh Toán 12 năm 2023 - 2024 sở GD&ĐT Hà Tĩnh
Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 - 2025 sở GD&ĐT Bình Dương
Đề chọn HSG trường Toán 12 năm 2022 - 2023 trường chuyên Phan Bội Châu - Nghệ An
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GD&ĐT Hưng Yên
Đề thi học sinh giỏi Toán 12 năm 2022 - 2023 sở GD&ĐT TP Hồ Chí Minh
Be the first to comment