TOANPDF.com giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi lập đội tuyển chọn học sinh giỏi dự thi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra trong hai ngày 14/09/2023 và 15/09/2023.Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước:
+ Cho tam giác ABC có trực tâm H nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn đường kính AH và đường tròn (O) cắt nhau tại T khác A. AT cắt BC tại Q. NP cắt tiếp tuyến tại A của đường tròn (O) tại R. a) Chứng minh rằng QR vuông góc với OH. b) Đường thẳng đối xứng với HM qua phân giác trong góc BHC cắt đoạn thẳng BC tại I. Gọi K là hình chiếu của A trên HI. Chứng minh rằng đường tròn ngoại tiếp tam giác MIK tiếp xúc với đường tròn (O).
+ Trên bàn có 99 tấm thẻ được đánh số từ 1 đến 4 và từ 6 đến 100. Hai bạn A và B luân phiên chơi trò chơi với luật như sau: i) A là người thực hiện lượt chơi đầu tiên. ii) Trong mỗi lượt chơi, người chơi nhặt ra khỏi bàn 2 tấm thẻ được đánh hai số nguyên liên tiếp nhau sao cho số bé hơn không chia hết cho 10 và giữ một tấm thẻ trên tay đồng thời bỏ đi tấm thẻ còn lại. iii) Khi tới lượt chơi của mình, nếu người chơi không thể thực hiện được yêu cầu ii hoặc chọn được hai tấm thẻ nhưng tổng số của một trong hai tấm thẻ đó với một tấm thẻ tuỳ ý trên tay hai người chơi đang giữ bằng 101 thì là người thua cuộc. Biết rằng hai người chơi có thể thấy được số ghi trên tất cả các tấm thẻ trên bàn và trong tay đối thủ. Hỏi ai là người có chiến thuật thắng.
+ Cho đa thức bậc hai P(x) thuộc R[x] thoả mãn P(x) > 0 với mọi x ≥ 0. Chứng minh rằng tồn tại số nguyên dương m sao cho (x + 1)^m.P(x) là đa thức với hệ số không âm.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước
Bạn đang xem Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GD&ĐT Lạng Sơn
Đề thi HSG Toán 12 lần 2 năm 2019 - 2020 trường THPT Đồng Đậu - Vĩnh Phúc
Đề học sinh giỏi Toán 12 năm 2022 - 2023 trường THPT Tĩnh Gia 1 - Thanh Hóa
Đề thi HSG Toán THPT cấp tỉnh năm 2020 - 2021 sở GD&ĐT Ninh Bình
Đề thi học sinh giỏi Toán 12 năm 2019 - 2020 trường Yên Lạc 2 - Vĩnh Phúc
Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2023 - 2024
Đề HSG Toán 12 và lập đội tuyển thi HSG QG năm 2023 - 2024 sở GD&ĐT Hà Nam
Đề học sinh giỏi Toán 12 chuyên năm 2023 - 2024 sở GD&ĐT Vĩnh Phúc
Be the first to comment