Sáng thứ Năm ngày 28 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2019 – 2020.Đề thi chọn HSG tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bắc Ninh mã đề 898 gồm có 06 trang, đề có 50 câu trắc nghiệm, thời gian học sinh làm bài là 90 phút.Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bắc Ninh:
+ Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu có phương trình là x^2 + y^2 + z^2 = 1; (x – 2)^2 + (y – 1)^2 + (z + 2)^2 = 4 và (x + 4)^2 + y^2 + (z – 3)^2 = 16. Gọi M là điểm di động ở ngoài ba mặt cầu và X, Y, Z là các tiếp điểm của các tiếp tuyến vẽ từ M đến ba mặt cầu sao cho MX = MY = MZ. Khi đó tập hợp các điểm M là đường thẳng d cố định. Hỏi d vuông góc với mặt phẳng nào?
[ads]
+ Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2020. Gọi (a) là mặt phẳng thay đổi vuông góc với AC và luôn có điểm chung với tất cả các mặt của hình lập phương. Gọi S, L lần lượt là diện tích và chu vi của thiết diện tạo bởi (a) với hình lập phương. Khẳng định nào sau đây đúng?
A. S thay đổi, L không đổi. B. S không đổi, L không đổi.
C. S thay đổi, L thay đổi. D. S không đổi, L thay đổi.
+ Trong không gian với hệ tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A(0; 0; 0) trùng với O, B(2; 0; 0), D(0; 3; 0), A'(0; 0; 3). Gọi (H) là tập tất cả các điểm M(x; y; z) với x, y, z nguyên, nằm trên hoặc trong hình hộp chữ nhật. Chọn ngẫu nhiên hai điểm E, F phân biệt thuộc (H). Xác suất để trung điểm I của EF cũng nằm trong (H) bằng?
Đề thi chọn HSG tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bắc Ninh
Bạn đang xem Đề thi chọn HSG tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bắc Ninh.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề chọn đội tuyển HSG Toán THPT năm 2020 - 2021 sở GD&ĐT TP HCM
Đề học sinh giỏi Toán 12 chuyên năm 2023 - 2024 sở GD&ĐT Vĩnh Phúc
Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 - 2021 sở GD&ĐT Hà Nội
Đề tham khảo học sinh giỏi Toán 12 năm 2024 - 2025 sở GD&ĐT Hải Phòng
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GD&ĐT Hưng Yên
Đề thi chọn HSG Toán năm 2019 - 2020 trường THPT Ngô Gia Tự - Phú Yên
Đề thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 - 2021
Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 - 2025 sở GD&ĐT Lào Cai
Be the first to comment