TOANPDF.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 Trung học Phổ thông (THPT) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào sáng thứ Năm ngày 09 tháng 03 năm 2023.Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Bến Tre:
+ Cho hàm số y = (m − 3)x3 + mx2 + (m + 1)x + 9. Tìm tất cả các giá trị thực của tham số m để hàm số nghịch biến trên R. Cho phương trình x4 − 4×3 + 8x = k (với k là tham số thực). a) Giải phương trình với k = 5. b) Tìm tất cả các số nguyên k để phương trình có 4 nghiệm phân biệt.
+ Trong 1600 thí sinh dự thi Kỳ thi chọn học sinh giỏi cấp tỉnh ngày 9/3/2023, người ta lập ra các nhóm như sau: Chọn k thí sinh trong 1600 thí sinh và trong k thí sinh đó chọn ra 1 thí sinh làm nhóm trưởng (1 ≤ k ≤ 1600). Hỏi có tất cả bao nhiêu cách lập ra các nhóm như trên.
+ Cho hình lập phương ABCD.A0B0C0D0 có độ dài cạnh bằng a. Trên đoạn AD0 lấy điểm M, trên đoạn BD lấy điểm N sao cho AM = DN = x, với 0 < x < a√2. Chứng minh độ dài đoạn MN ngắn nhất khi x = a√23. Khi đó, tính độ dài đoạn MN. a) Cho tứ diện ABCD. Chứng minh rằng (AB + CD)2 + (AD + BC)2 > (AC + BD)2.
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Bến Tre
Bạn đang xem Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Bến Tre.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề thi Olympic môn Toán năm 2023 trường THPT chuyên KHTN - Hà Nội
Đề thi HSG tỉnh Toán 12 năm 2019 - 2020 sở GD&ĐT Lâm Đồng
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2022 - 2023 sở GD&ĐT Lâm Đồng
Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 - 2020 sở GD&ĐT Ninh Bình
Đề thi HSG Toán 12 (vòng 2) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GD&ĐT Bình Định
Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 - 2025 sở GD&ĐT Cần Thơ
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 - 2024 sở GD&ĐT Bà Rịa - Vũng Tàu
Be the first to comment