Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn thi Toán năm học 2019 – 2020.Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian làm bài thi là 90 phút.Trích dẫn đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh:
+ Cho tập hợp X = {x | x thuộc Z; -5 ≤ x ≤ 5; x khác 0}. Chọn ngẫu nhiên 4 số đôi một phân biệt a, b, c, d thuộc X. Tính xác suất để hàm số y = (ax + b)/(cx + d) (với ad khác bc) có đồ thị (C) mà cả (C) lẫn tiệm cận đứng của (C) đều cắt trục Ox theo chiều dương.
[ads]
+ Cho hàm số f(x) = 1/2.x^2 – mx, tham số m khác 1, có đồ thị (C1), (C2). Biết rằng tồn tại đúng hai số x0 thuộc (2;3) sao cho nếu gọi d1, d2 là tiếp tuyến tại các điểm có hoành độ x0 thuộc (C1), (C2) và d1, d2 cắt nhau ở A, còn d1, d2 cắt trục Ox ở B, C thì AB = AC. Tìm tất cả các giá trị m.
+ Cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Gọi d là đường thẳng di động đi qua điểm I(1;1) và cắt (C) tại hai điểm M, N. Tính khoảng cách từ điểm A(2;-3) đến d khi tam giác AMN có diện tích nhỏ nhất.
Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh
Bạn đang xem Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề chọn HSG thành phố Toán 12 năm 2019 - 2020 sở GD&ĐT Hải Phòng
Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 - 2020
Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2019 sở GD&ĐT Quảng Ninh
Đề chọn học sinh giỏi Toán 12 năm 2020 - 2021 sở GD&ĐT Gia Lai (Bảng B)
Đề thi học sinh giỏi Toán 12 THPT cấp tỉnh năm 2019 - 2020 sở GD&ĐT Quảng Nam
Đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Đắk Lắk (ngày 2)
Đề thi chọn học sinh giỏi Toán 12 năm 2022 - 2023 sở GD&ĐT Nam Định
Đề chọn đội tuyển HSG Toán 12 năm 2024 - 2025 trường THPT Anh Sơn 3 - Nghệ An
Be the first to comment