Tài liệu gồm 26 trang gồm lý thuyết, các dạng toán và bài tập trắc nghiệm có lời giải chi tiết chuyên đề khối đa diện trong chương trình Hình học 12 chương 1.
DẠNG 1. KHÁI NIỆM KHỐI ĐA DIỆN
I. KHÁI NIỆM VỀ HÌNH ĐA DIỆN VÀ KHỐI ĐA DIỆN
1. Khái niệm về hình đa diện
Hình đa diện (gọi tắt là đa diện) (H) là hình được tạo bởi một số hữu hạn các đa giác thỏa mãn hai tính chất trên. Mỗi đa giác như thế được gọi là các mặt của đa diện. Các đỉnh các cạnh của đa giác ấy theo thứ tự được gọi là các đỉnh, cạnh của đa diện.
2. Khái niệm về khối đa diện
Khối đa diện là phần không gian được giới hạn bới một hình đa diện (H), kể cả hình đa diện đó. Những điểm không thuộc khối đa diện được gọi là điểm ngoài của khối đa diện. Những điểm thuộc khối đa diện nhưng không thuộc hình đa diện giới hạn khối đa diện ấy được gọi là điểm trong của khối đa diện. Tập hợp các điểm trong được gọi là miền trong, tập hợp các điểm ngoài được gọi là miền ngoài khối đa diện.
[ads]
II. HAI HÌNH BẲNG NHAU
1. Phép dời hình trong không gian và sự bằng nhau giữa các khối đa diện
+ Trong không gian quy tắc đặt tương ứng mỗi điểm M với điểm M’ xác định duy nhất được gọi là một phép biến hình trong không gian.
+ Phép biến hình trong không gian được gọi là phép dời hình nếu nó bảo toàn khoảng cách giữa hai điểm tùy ý.
2. Hai hình bằng nhau: Hai hình được gọi là bằng nhau nếu có một phép dời hình biến hình này thành hình kia.
DẠNG 2. KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU
I. KHỐI ĐA DIỆN LỒI
Khối đa diện (H) được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Khi đó đa diện giới hạn (H) được gọi là đa diện lồi.
Công thức ƠLE: Trong một đa diện lồi nếu gọi Đ là số đỉnh, C là số cạnh, M là số mặt Đ – C + M = 2.
II. KHỐI ĐA DIỆN ĐỀU
Khối đa diện đều là khối đa diện lồi có các tính chất sau:
+ Mỗi mặt của nó là một đa giác đều p cạnh
+ Mỗi đỉnh của nó là đỉnh chung của đúng q mặt
Khối đa diện đều như vậy được gọi là khối đa diện đều loại {p;q}.
Lý thuyết khối đa diện – Trần Đình Cư
Bạn đang xem Lý thuyết khối đa diện – Trần Đình Cư.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Tài liệu tự học chuyên đề đa diện và thể tích khối đa diện - Lê Minh Cường
Bàn về một cách tiếp cận khác cho bài toán tính góc giữa đường thẳng và mặt phẳng
Chuyên đề khối đa diện và thể tích khối đa diện - Đặng Việt Đông
Chuyên đề thể tích khối đa diện - Nguyễn Văn Thân
Chuyên đề khối đa diện và thể tích khối đa diện - Phạm Hùng Hải
Chuyên đề trắc nghiệm thể tích khối chóp
Toàn tập thể tích khối đa diện vận dụng cao
Chuyên đề khối đa diện - Trần Quốc Nghĩa
Be the first to comment