Thứ Năm ngày 17 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia lớp 12 Trung học Phổ thông môn Toán năm học 2020 – 2021.Đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2020 – 2021 sở GD&ĐT Bến Tre gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút.Trích dẫn đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2020 – 2021 sở GD&ĐT Bến Tre:
+ Cho tam giác ABC nhọn có góc BAC = 30 độ. Hai đường phân giác trong và ngoài của góc ABC lần lượt cắt đường thẳng AC tại B1 và B2; hai đường phân giác trong và ngoài của góc ACB lần lượt cắt đường thẳng AB tại C1 và C2. Giả sử đường tròn đường kính B1B2 và đường tròn đường kính C1C2 cắt nhau tại một điểm P nằm bên trong tam giác ABC. Chứng minh rằng góc BPC = 90 độ.
+ Cho dãy số (un) được xác định bởi: u1 = 20; u2 = 30; u_n+2 = 3.u_n+1 – u_n với n thuộc N*. Tìm tất cả các số nguyên dương n sao cho 1 + 5.u_n.u_n+1 là một số chính phương.
+ Cho đa thức P(x;y) không phải là đa thức hằng, thỏa mãn: P(x;y).P(z;t) = P(xz + yt;xt + yz) với mọi x, y, z, t thuộc R. Chứng minh rằng: P(x;y) chia hết cho ít nhất một trong hai đa thức Q(x;y) = x + y; H(x;y) = x – y.
Đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2020 – 2021 sở GD&ĐT Bến Tre
Bạn đang xem Đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2020 – 2021 sở GD&ĐT Bến Tre.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề thi chọn HSG cấp huyện Toán 12 năm 2020 - 2021 sở GD&ĐT Cao Bằng
Đề chọn HSG cấp tỉnh Toán 12 năm 2020 - 2021 trường chuyên Bắc Ninh
Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THCS & THPT Như Xuân - Thanh Hóa
Đề KSCL HSG Toán THPT năm 2022 - 2023 trường THPT Hà Văn Mao - Thanh Hóa
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 - 2023 sở GD&ĐT Thanh Hóa
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 - 2020 sở GD&ĐT Đồng Tháp
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 - 2021 sở GD&ĐT Khánh Hòa
Đề khảo sát học sinh giỏi Toán 12 năm 2020 - 2021 trường THPT Quế Võ 1 - Bắc Ninh
Be the first to comment