Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn thi Toán năm học 2019 – 2020.Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian làm bài thi là 90 phút.Trích dẫn đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh:
+ Cho tập hợp X = {x | x thuộc Z; -5 ≤ x ≤ 5; x khác 0}. Chọn ngẫu nhiên 4 số đôi một phân biệt a, b, c, d thuộc X. Tính xác suất để hàm số y = (ax + b)/(cx + d) (với ad khác bc) có đồ thị (C) mà cả (C) lẫn tiệm cận đứng của (C) đều cắt trục Ox theo chiều dương.
[ads]
+ Cho hàm số f(x) = 1/2.x^2 – mx, tham số m khác 1, có đồ thị (C1), (C2). Biết rằng tồn tại đúng hai số x0 thuộc (2;3) sao cho nếu gọi d1, d2 là tiếp tuyến tại các điểm có hoành độ x0 thuộc (C1), (C2) và d1, d2 cắt nhau ở A, còn d1, d2 cắt trục Ox ở B, C thì AB = AC. Tìm tất cả các giá trị m.
+ Cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Gọi d là đường thẳng di động đi qua điểm I(1;1) và cắt (C) tại hai điểm M, N. Tính khoảng cách từ điểm A(2;-3) đến d khi tam giác AMN có diện tích nhỏ nhất.
Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh
Bạn đang xem Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 - 2020 sở GD&ĐT Đồng Tháp
Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Đông Sơn 1 - Thanh Hóa
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GD&ĐT Bình Phước
Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 - 2025 sở GD&ĐT Bắc Ninh
Đề chọn đội tuyển thi HSG QG môn Toán THPT năm 2024 - 2025 sở GD&ĐT Đồng Tháp
Đề KSCL HSG Toán THPT năm 2022 - 2023 trường THPT Hà Văn Mao - Thanh Hóa
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 - 2024 sở GD&ĐT Khánh Hòa
Đề chọn học sinh giỏi Toán THPT vòng tỉnh năm 2022 - 2023 sở GD&ĐT Vĩnh Long
Be the first to comment