Tài liệu gồm 21 trang được biên soạn bởi thầy Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm vận dụng cao, phân loại đồ thị – bảng biến thiên (phần 1 – 10) thuộc chương trình Giải tích 12, giúp học sinh ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán.Trích dẫn tài liệu hệ thống bài tập trắc nghiệm vận dụng cao, phân loại đồ thị – bảng biến thiên (phần 1 – 10):
+ Cho hàm số y = f(x) liên tục trên [0;5,5], đồ thị của hàm số trên [0;5,5] như hình vẽ. Hỏi hàm số g = [f(x)]^2 có tối đa bao nhiêu điểm cực trị?
+ Cho hàm số y = 2019x^2019 + 2017x^2017 + … + 3x^3 + 1999x – 1993|x – 1| + 1992. Có bao nhiêu giá trị nguyên không âm của m để phương trình f(3sin2x + 8(cosx)^2 – 4) = f(m^2 + m) có nghiệm thực?
+ Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Số các giá trị nguyên của tham số m không vượt quá 5 để phương trình f(pi^x) – (m^2 – 1)/8 = 0 có hai nghiệm phân biệt là?
[ads]
+ Hàm số y = e^-2x^2 có đồ thị như hình vẽ bên. ABCD là hình chữ nhật thay đổi sao cho A và B luôn thuộc đồ thị hàm số đã cho. CD luôn nằm trên trục hoành. Giá trị lớn nhất của diện tích hình chữ nhật ABCD là?
+ Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên m để phương trình f(6sinx + 8cosx) = f(m(m + 1)) có nghiệm thực?Xem thêm:
Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại đồ thị – bảng biến thiên (phần 1 – 10)
Bạn đang xem Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại đồ thị – bảng biến thiên (phần 1 – 10).
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Bài toán tương giao của đồ thị hàm số - Lê Bá Bảo
Các dạng bài tập khảo sát sự biến thiên và vẽ đồ thị của hàm số Toán 12 KNTTVCS
Bài tập trắc nghiệm tính đơn điệu của hàm số chứa tham số m
Tóm tắt lý thuyết và bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số
Tổng hợp lý thuyết ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số
Luyện kỹ năng ứng dụng hàm số giải bài toán thực tế
Các dạng bài tập giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 KNTTVCS
Các dạng bài tập trắc nghiệm VDC đường tiệm cận của đồ thị hàm số
Be the first to comment