Tài liệu gồm 83 trang được biên soạn bởi tác giả Nguyễn Thế Út tuyển tập 548 câu hỏi và bài toán trắc nghiệm có đáp án chủ đề ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số trong chương trình Giải tích 12 chương 1.Khái quát nội dung tài liệu tuyển tập trắc nghiệm ứng dụng đạo hàm – Nguyễn Thế Út:
§1. Sự đồng biến và nghịch biến của hàm số.
Dạng 1: Xét tính đơn điệu của hàm số cho bởi công thức.
Dạng 2: Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị.
Dạng 3: Tìm tham số m để hàm số đơn điệu.
Dạng 4: Ứng dụng tính đơn điệu vào các bài toán đại số.
§2. Cực trị của hàm số.
Dạng 1: Tìm cực trị của hàm số cho bởi công thức.
Dạng 2: Tìm cực trị dựa vào BBT, đồ thị.
Dạng 3: Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước.
Dạng 4: Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện.
Dạng 5: Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện.
Dạng 6: Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện.
[ads]
§3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Dạng 1: GTLN, GTNN trên đoạn [a; b].
Dạng 2: GTLN, GTNN trên khoảng.
Dạng 3: Sử dụng các đánh giá, bất đẳng thức cổ điển.
Dạng 4: Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình.
Dạng 5: GTLN, GTNN hàm nhiều biến.
Dạng 6: Bài toán ứng dụng, tối ưu, thực tế.
§4. Đường tiệm cận.
Dạng 1: Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị.
Dạng 2: Bài toán xác định các đường tiệm cận của hàm số có chứa tham số.
Dạng 3: Bài toán liên quan đến đồ thị hàm số và các đường tiệm cận.
§5. Khảo sát sự biến thiên và vẽ đồ thị hàm số.
Dạng 1: Nhận dạng đồ thị.
Dạng 2: Các phép biến đổi đồ thị.
Dạng 3: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên.
Dạng 4: Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm).
Dạng 5: Đồ thị của hàm đạo hàm.
Dạng 6: Phương trình tiếp tuyến của đồ thị hàm số.
Dạng 7: Điểm đặc biệt của đồ thị hàm số.
Tuyển tập trắc nghiệm ứng dụng đạo hàm – Nguyễn Thế Út
Bạn đang xem Tuyển tập trắc nghiệm ứng dụng đạo hàm – Nguyễn Thế Út.
Cập nhật thêm đề thi thử, đề kiểm tra toán, học toán tại Toanpdf.com
Xác định hệ số của hàm số khi biết bảng biến thiên hoặc đồ thị
Bài tập tính đơn điệu của hàm số - Diệp Tuân
Chuyên đề cô lập đường thẳng trong biện luận đồ thị hàm số có chứa tham số
Chuyên đề khảo sát hàm số Toán 12: Sự tương giao của hai đồ thị hàm số
Chuyên đề đường tiệm cận của đồ thị hàm số - Phạm Hoàng Điệp
Hệ thống bài tập trắc nghiệm tính đơn điệu hàm số cơ bản - vận dụng - vận dụng cao
Chuyên đề khảo sát và vẽ đồ thị hàm số ôn thi THPT 2021 - Nguyễn Bảo Vương
Các dạng toán GTLN - GTNN của hàm số thường gặp trong kỳ thi THPTQG
Be the first to comment